医中誌リンクサービス


文献リスト

1)Hruska KA, Mathew S, Lund R, et al. Hyperphosphatemia of chronic kidney disease. Kidney Int. 2008; 74: 148-57
PubMed CrossRef
医中誌リンクサービス
2)Miyamoto K, Haito-Sugino S, Kuwahara S, et al. Sodium-dependent phosphate cotransporters: lessons from gene knockout and mutation studies. J Pharm Sci. 2011; 100: 3719-30
PubMed CrossRef
医中誌リンクサービス
3)Quarles LD. Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nat Rev Endocrinol. 2012; 8: 276-86
PubMed CrossRef
医中誌リンクサービス
4)Kuro-o M. Klotho in health and disease. Curr Opin Nephrol Hypertens. 2012; 21: 362-8
PubMed CrossRef
医中誌リンクサービス
5)Lederer E, Miyamoto K. Clinical consequences of mutations in sodium phosphate cotransporters. Clin J Am Soc Nephrol. 2012: 7: 1179-87
PubMed CrossRef
医中誌リンクサービス
6)Magen D, Berger L, Coady MJ, et al. A loss-of-function mutation in NaPi-IIa and renal Fanconi’s syndrome. N Engl J Med. 2010: 362: 1102-9
PubMed CrossRef
医中誌リンクサービス
7)Cheng CY, Kuro-o M, Razzaque MS. Molecular regulation of phosphate metabolism by fibroblast growth factor-23-klotho system. Adv Chronic Kidney Dis. 2011; 18: 91-7
PubMed CrossRef
医中誌リンクサービス
8)De Beur SM, Finnegan RB, Vassiliadis J, et al. Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J Bone Miner Res. 2002; 17: 1102-10
PubMed CrossRef
医中誌リンクサービス
9)Berndt T, Craig TA, Bowe AE, et al. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J Clin Invest. 2003; 112: 785-94
PubMed
医中誌リンクサービス
10)Carpenter TO, Ellis BK, Insogna KL, et al. Fibroblast growth factor 7: an inhibitor of phosphate transport derived from oncogenic osteomalacia-causing tumors. J Clin Endocrinol Metab. 2005; 90: 1012-20
PubMed
医中誌リンクサービス
11)Feng JQ, Ward LM, Liu S, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Gent. 2006; 38: 1310-5
医中誌リンクサービス
12)Rowe PS. The chicken or the egg: PHEX, FGF23 and SIBLINGs unscrambled. Cell Biochem Funct. 2012; 30: 355-75
PubMed CrossRef
医中誌リンクサービス
13)Berndt T, Thomas LF, Craig TA, et al. Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sic U S A. 2007; 104: 11085-90
医中誌リンクサービス
14)Datta HK, Malik M, Neely RD. Hepatic surgery-related hypophostatemia. Clin Chim Acta. 2007; 380: 13-23
PubMed CrossRef
医中誌リンクサービス
15)Weinman EJ, Lederer ED. NHERF-1 and the regulation of renal phosphate reabsoption: a tale of three hormones. Am J Physiol Renal Physiol. 2012; 303: F321-7
PubMed
医中誌リンクサービス
16)Wang B, Means CK, Yang Y, et al. Ezrin-anchored protein kinase A coordinates phosphorylation-dependent disassembly of a NHERF1 ternary complex to regulate hormone-sensitive phosphate transport. J Biol Chem. 2012; 287: 24148-63
PubMed CrossRef
医中誌リンクサービス
17)Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev. 2012; 92: 131-55
PubMed CrossRef
医中誌リンクサービス
18)Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 2012. (in press)
PubMed
医中誌リンクサービス
19)Kurosu H, Ogawa Y, Miyoshi M, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006; 281: 6120-3
PubMed CrossRef
医中誌リンクサービス
20)Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006; 444: 770-4
PubMed
医中誌リンクサービス
21)Farrow EG, Davis SI, Summers LJ, et al. Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J Am Soc Nephrol. 2009; 20: 955-60
PubMed CrossRef
医中誌リンクサービス
22)Razzaque MS. FGF23-mediated regulation of systemic phosphate homeostasis: is Klotho an essential player? Am J Physiol Renal Physiol. 2009; 296: F470-6. Review
PubMed
医中誌リンクサービス
23)Gattineni J, Bates C, Twombley K, et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol. 2009; 297: F282-91
PubMed
医中誌リンクサービス
24)Gattineni J, Twombley K, Goetz R, et al. Regulation of serum 1,25(OH)2 vitamin D3 levels by fibroblast growth factor 23 is mediated by FGF receptors 3 and 4. Am J Physiol Renal Physiol. 2011; 301: F371-7
PubMed
医中誌リンクサービス
25)Hu MC, Shi M, Zhang J, et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010; 24: 3438-50
PubMed CrossRef
医中誌リンクサービス
26)Cha SK, Hu MC, Kurosu H, et al. Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho. Mol Pharmacol. 2009; 76: 38-46
PubMed CrossRef
医中誌リンクサービス
27)Chang Q, Hoefs S, van der Kemp AW, et al. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science. 2005; 310: 490-3
PubMed
医中誌リンクサービス
28)Cha SK, Ortega B, Kurosu H, et al. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci U S A. 2008; 105: 9805-10
PubMed CrossRef
医中誌リンクサービス
29)Martin DR, Ritter CS, Slatopolsky E, et al. Acute regulation of parathyroid hormone by dietary phosphate. Am J Physiol Endocrinol Metab. 2005; 289: E729-34
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp