医中誌リンクサービス


文献リスト

1)Nakatogawa H, Suzuki K, Kamada Y, et al. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009; 10(7): 458-67
PubMed CrossRef
医中誌リンクサービス
2)Tanida I. Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal. 2011; 14(11): 2201-14
PubMed CrossRef
医中誌リンクサービス
3)Asanuma K, Tanida I, Shirato I, et al. MAP-LC3, a promising autophagosomal marker, is processed during the differentiation and recovery of podocytes from PAN nephrosis. FASEB J. 2003; 17(9): 1165-7
PubMed
医中誌リンクサービス
4)Mizushima N, Yamamoto A, Matsui M, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004; 15(3): 1101-11
PubMed
医中誌リンクサービス
5)Hartleben B, Godel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest. 2010; 120(4): 1084-96
PubMed CrossRef
医中誌リンクサービス
6)Yadav A, Vallabu S, Arora S, et al. ANG II promotes autophagy in podocytes. Am J Physiol Cell Physiol. 2010; 299(2): C488-96
PubMed CrossRef
医中誌リンクサービス
7)Ichihara A, Kaneshiro Y, Takemitsu T, et al. The (pro)renin receptor and the kidney. Semin Nephrol. 2007; 27(5): 524-8
PubMed CrossRef
医中誌リンクサービス
8)Sakoda M, Ichihara A, Kurauchi-Mito A, et al. Aliskiren inhibits intracellular angiotensin II levels without affecting (pro)renin receptor signals in human podocytes. Am J Hypertens. 2010; 23(5): 575-80
PubMed CrossRef
医中誌リンクサービス
9)Oshima Y, Kinouchi K, Ichihara A, et al. Prorenin receptor is essential for normal podocyte structure and function. J Am Soc Nephrol. 2011; 22(12): 2203-12
PubMed CrossRef
医中誌リンクサービス
10)Riediger F, Quack I, Qadri F, et al. Prorenin receptor is essential for podocyte autophagy and survival. J Am Soc Nephrol. 2011; 22(12): 2193-202
PubMed CrossRef
医中誌リンクサービス
11)Sou YS, Tanida I, Komatsu M, et al. Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J Biol Chem. 2006; 281(6): 3017-24
PubMed
医中誌リンクサービス
12)Kabeya Y, Mizushima N, Yamamoto A, et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci. 2004; 117(Pt 13): 2805-12
PubMed CrossRef
医中誌リンクサービス
13)Weidberg H, Shvets E, Shpilka T, et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 2010; 29(11): 1792-802
医中誌リンクサービス
14)Takagi-Akiba M, Asanuma K, Tanida I, et al. Doxorubicin-induced glomerulosclerosis with proteinuria in GFP-GABARAP transgenic mice. Am J Physiol Renal Physiol. 2011; 302: F380-9
PubMed
医中誌リンクサービス
15)Weide T, Huber TB. Implications of autophagy for glomerular aging and disease. Cell Tissue Res. 2011; 343(3): 467-73
PubMed CrossRef
医中誌リンクサービス
16)Godel M, Hartleben B, Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest. 2011; 121(6): 2197-209
PubMed CrossRef
医中誌リンクサービス
17)Inoki K, Mori H, Wang J, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest. 2011; 121(6): 2181-96
PubMed CrossRef
医中誌リンクサービス
18)Cina DP, Onay T, Paltoo A, et al. Inhibition of MTOR disrupts autophagic flux in podocytes. J Am Soc Nephrol. 2012; 23(3): 412-20
PubMed CrossRef
医中誌リンクサービス
19)Ito N, Nishibori Y, Ito Y, et al. mTORC1 activation triggers the unfolded protein response in podocytes and leads to nephrotic syndrome. Lab Invest. 2011; 91(11): 1584-95
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp