医中誌リンクサービス


文献リスト

1)Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997; 390: 45-51
PubMed CrossRef
医中誌リンクサービス
2)Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011; 121: 4393-408
PubMed CrossRef
医中誌リンクサービス
3)Kawaguchi H, Manabe N, Miyaura C, et al. Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia. J Clin Invest. 1999; 104: 229-37
PubMed CrossRef
医中誌リンクサービス
4)Suga T, Kurabayashi M, Sando Y, et al. Disruption of the klotho gene causes pulmonary emphysema in mice. Defect in maintenance of pulmonary integrity during postnatal life. Am J Respir Cell Mol Biol. 2000; 22: 26-33
PubMed CrossRef
医中誌リンクサービス
5)Nagai T, Yamada K, Kim HC, et al. Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. FASEB J. 2003; 17: 50-2
PubMed
医中誌リンクサービス
6)Kamemori M, Ohyama Y, Kurabayashi M, et al. Expression of Klotho protein in the inner ear. Hear Res. 2002; 171: 103-10
PubMed CrossRef
医中誌リンクサービス
7)White KE, Evans WE, O’Rlordan JLH, et al. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000; 26: 345-8
PubMed CrossRef
医中誌リンクサービス
8)Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004; 19: 429-35
PubMed
医中誌リンクサービス
9)White KE, Carn G, Lorenz-Depiereux B, et al. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 2001; 60: 2079-86
PubMed CrossRef
医中誌リンクサービス
10)Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004; 113: 561-8
PubMed CrossRef
医中誌リンクサービス
11)Zhang X, Ibrahimi OA, Olsen SK, et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem. 2006; 281: 15694-700
PubMed CrossRef
医中誌リンクサービス
12)Kurosu H, Ogawa Y, Miyoshi M, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006; 281: 6120-3
PubMed CrossRef
医中誌リンクサービス
13)Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006; 444: 770-4
PubMed CrossRef
医中誌リンクサービス
14)Hu MC, Shiizaki K, Kuro-o M, et al. Fibroblast growth factor 23 and klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. 2013; 75: 503-33
PubMed CrossRef
医中誌リンクサービス
15)Kuro-o M. Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol. 2013; 9: 650-60
PubMed CrossRef
医中誌リンクサービス
16)Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011; 79: 1370-8
PubMed CrossRef
医中誌リンクサービス
17)Tonelli M, Sacks F, Pfeffer M, et al. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation. 2005; 112: 2627-33
PubMed CrossRef
医中誌リンクサービス
18)Kuro-o M. A potential link between phosphate and aging--lessons from Klotho-deficient mice. Mech Ageing Dev. 2010; 131: 270-5
PubMed CrossRef
医中誌リンクサービス
19)Stenvinkel P, Larsson TE. Chronic kidney disease: a clinical model of premature aging. Am J Kidney Dis. 2013; 62: 339-51
PubMed CrossRef
医中誌リンクサービス
20)Hu MC, Kuro-o M, Moe OW. Klotho and chronic kidney disease. Contrib Nephrol. 2013; 180: 47-63
PubMed
医中誌リンクサービス
21)Okawa A, Nakamura I, Goto S, et al. Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet. 1998; 19: 271-3
PubMed CrossRef
医中誌リンクサービス
22)Rutsch F, Ruf N, Vaingankar S, et al. Mutations in ENPP1 are associated with ‘idiopathic’ infantile arterial calcification. Nat Genet. 2003; 34: 379-81
PubMed CrossRef
医中誌リンクサービス
23)Luo G, Ducy P, McKee MD, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 1997; 386: 78-81
PubMed CrossRef
医中誌リンクサービス
24)Schafer C, Heiss A, Schwarz A, et al. The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest. 2003; 112: 357-66
PubMed CrossRef
医中誌リンクサービス
25)Matsui I, Hamano T, Mikami S, et al. Retention of fetuin-A in renal tubular lumen protects the kidney from nephrocalcinosis in rats. Am J Physiol Renal Physiol. 2013; 304: F751-60
PubMed
医中誌リンクサービス
26)Heiss A, Pipich V, Jahnen-Dechent W, et al. Fetuin-A is a mineral carrier protein: small angle neutron scattering provides new insight on fetuin-a controlled calcification inhibition. Biophys J. 2010; 99: 3986-95
PubMed CrossRef
医中誌リンクサービス
27)Hamano T, Matsui I, Mikami S, et al. Fetuin-mineral complex reflects extraosseous calcification stress in CKD. J Am Soc Nephrol. 2010; 21: 1998-2007
PubMed CrossRef
医中誌リンクサービス
28)Smith ER, Ford ML, Tomlinson LA, et al. Phosphorylated fetuin-A-containing calciprotein particles are associated with aortic stiffness and a procalcific milieu in patients with pre-dialysis CKD. Nephrol Dial Transplant. 2012; 27: 1957-66
PubMed CrossRef
医中誌リンクサービス
29)Chmielewski M, Carrero JJ, Stenvinkel P, et al. Metabolic abnormalities in chronic kidney disease that contribute to cardiovascular disease, and nutritional initiatives that may diminish the risk. Curr Opin Lipidol. 2009; 20: 3-9
PubMed CrossRef
医中誌リンクサービス
30)Hruska KA, Choi ET, Memon I, et al. Cardiovascular risk in chronic kidney disease (CKD): the CKD-mineral bone disorder (CKD-MBD). Pediatr Nephrol. 2010; 25: 769-78
PubMed CrossRef
医中誌リンクサービス
31)Steitz SA, Speer MY, Curinga G, et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 2001; 89: 1147-54
PubMed CrossRef
医中誌リンクサービス
32)Jono S, McKee MD, Murry CE, et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res. 2000; 87: E10-7
PubMed CrossRef
医中誌リンクサービス
33)Sage AP, Lu J, Tintut Y, et al. Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 2011; 79: 414-22
PubMed CrossRef
医中誌リンクサービス
34)Villa-Bellosta R, Sorribas V. Phosphonoformic acid prevents vascular smooth muscle cell calcification by inhibiting calcium-phosphate deposition. Arterioscler Thromb Vasc Biol. 2009; 29: 761-6
PubMed CrossRef
医中誌リンクサービス
35)Ewence AE, Bootman M, Roderick HL, et al. Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ Res. 2008; 103: e28-34
PubMed CrossRef
医中誌リンクサービス
36)Smith ER, Hanssen E, McMahon LP, et al. Fetuin-A-containing calciprotein particles reduce mineral stress in the macrophage. PLoS One. 2013; 8: e60904
CrossRef
医中誌リンクサービス
37)Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing Res Rev. 2011; 10: 319-29
PubMed CrossRef
医中誌リンクサービス
38)O’Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013; 493: 346-55
PubMed CrossRef
医中誌リンクサービス
39)Garinis GA, van der Horst GT, Vijg J, et al. DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol. 2008; 10: 1241-7
PubMed CrossRef
医中誌リンクサービス
40)Vijg J. The role of DNA damage and repair in aging: new approaches to an old problem. Mech Ageing Dev. 2008; 129: 498-502
PubMed CrossRef
医中誌リンクサービス
41)Yu CE, Oshima J, Fu YH, et al. Positional cloning of the Werner’s syndrome gene [see comments]. Science. 1996; 272: 258-62
PubMed CrossRef
医中誌リンクサービス
42)Canman CE, Lim DS, Cimprich KA, et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998; 281: 1677-9
PubMed CrossRef
医中誌リンクサービス
43)Herbig U, Jobling WA, Chen BP, et al. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell. 2004; 14: 501-13
PubMed CrossRef
医中誌リンクサービス
44)Jurk D, Wilson C, Passos JF, et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014; 2: 4172
医中誌リンクサービス
45)Niedernhofer LJ, Garinis GA, Raams A, et al. A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature. 2006; 444: 1038-43
PubMed CrossRef
医中誌リンクサービス
46)van der Pluijm I, Garinis GA, Brandt RM, et al. Impaired genome maintenance suppresses the growth hormone--insulin-like growth factor 1 axis in mice with Cockayne syndrome. PLoS Biol. 2007; 5: e2
PubMed CrossRef
医中誌リンクサービス
47)Bartke A. Minireview: role of the growth hormone/insulin-like growth factor system in mammalian aging. Endocrinology. 2005; 146: 3718-23
PubMed CrossRef
医中誌リンクサービス
48)Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell. 2005; 120: 449-60
PubMed CrossRef
医中誌リンクサービス
49)Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009; 325: 201-4
PubMed CrossRef
医中誌リンクサービス
50)Spindler SR. Caloric restriction: from soup to nuts. Ageing Res Rev. 2010; 9: 324-53
PubMed CrossRef
医中誌リンクサービス
51)Lin Z, Zhou Z, Liu Y, et al. Circulating FGF21 levels are progressively increased from the early to end stages of chronic kidney diseases and are associated with renal function in Chinese. PLoS One. 2011; 6: e18398
CrossRef
医中誌リンクサービス
52)Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 2012; 26: 312-24
PubMed CrossRef
医中誌リンクサービス
53)Ogawa Y, Kurosu H, Yamamoto M, et al. βKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci U S A. 2007; 104: 7432-7
PubMed CrossRef
医中誌リンクサービス
54)Bookout AL, de Groot MH, Owen BM, et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med. 2013; 19: 1147-52
PubMed CrossRef
医中誌リンクサービス
55)Inagaki T, Lin VY, Goetz R, et al. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab. 2008; 8: 77-83
PubMed CrossRef
医中誌リンクサービス
56)Potthoff MJ, Inagaki T, Satapati S, et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A. 2009; 106: 10853-8
PubMed CrossRef
医中誌リンクサービス
57)Zhang Y, Xie Y, Berglund ED, et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife. 2012; 1: e00065
医中誌リンクサービス
58)Inagaki T, Dutchak P, Zhao G, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007; 5: 415-25
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp