

心電図モニターにできること

心拍数がわかる

心電図モニターを使用する最大の目的は心拍数の把握です。心電図モニターは、QRS 波と QRS 波の間隔から心拍数を計算して表示します。

心拍数を表示はしますが、この表示を完全に信じることは危険です。あくまでプログラムされた範囲の中でコンピューターが判断した心拍数ですので、プログラムの中で判断できないような波形の場合は正しい心拍数の表示ができないこともあります。

明らかに表示されている心拍数が異常である場合は、スタッフの目でしっかりと波形を確認し て正しい心拍数を把握する必要があります。

ある程度の不整脈がわかる

患者の心臓の中の刺激伝導情報を波形として表示しますので、不整脈の判断ツールとしてはある程度の力を発揮します。しかし、心電図モニターの情報で常に確実な情報が得られるかというとそうとはいえません。そもそも、一般的に使用されている心電図モニターの3点誘導法は、12

誘導心電図のII誘導に近い波形が表示されています。II誘導は12誘導の中でも、刺激伝導系の軸にそった誘導です 図1-1。もっとも標準的な波形であり、P波、QRS波、T波の判断には適しているとされているので3点誘導法ではII誘導に近い波形を基本波形として選択するのが一般的となっています。そうはいっても、II誘導は12誘導のうちの1つでしかないので、情報量としては不十分です。ですので、II誘導に近い波形とされる3点誘導のモニター誘導で不整脈判別が確実にできない場合は、必ず12誘導心電図で正確な情報をえる必要があります。

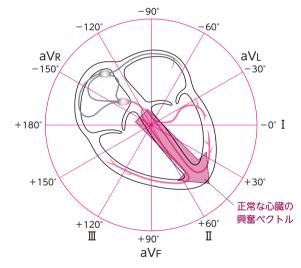


図1-1 心臓の電気軸と興奮ベクトル

簡単に長時間使用できる

心電図モニターの使用意義として、電極を3カ所に貼ればすぐに波形情報が画像として得られるという簡便性があります。12誘導心電図では患者は基本的に臥床安静を保ちますが、心電図モニターは患者が装着したままで入院生活を送ることが可能です。不整脈の発生しやすい時間帯と活動をある程度知ることができます。

不整脈や心拍数はその時々で変化します。12誘導心電図は数秒間の心電図情報を12の波形として表示できますが、長時間の装着は不可能です。一方で、どのタイミングでどういった状況で

発生するのかがわからない不整脈をキャッチするためには長時間のモニタリングが必須となります。12誘導心電図にとっては苦手分野になります。そこで、長時間のモニタリングのためには心電図モニターが必要不可欠となるのです。

SpO2 や動脈圧、中心静脈圧などの長時間モニタリングが可能なものもある

心電図モニターにはポケットサイズのテレメータ送信機、ベッドサイドに設置するベッドサイドモニター、ナースステーションで全てのモニター情報を監視するセントラルモニターがあります。ポケットサイズのテレメータ送信機ではあまり多くの情報を得ることはできません。基本的には 1 つの心電図波形画像と心拍数の表記だけになります。ものによっては SpO_2 の持続的測定が可能なものもあります。

一方で、ベッドサイドタイプのものは多くの情報を得ることが可能です。 SpO_2 測定はもちろんのこと、非観血的血圧、観血的動脈圧、中心静脈圧、PAWPなど、様々な情報を得ることが可能です。集中治療管理をしている患者にはベッドサイドタイプの心電図モニターを装着します。

呼吸回数はあてにならない

ベッドサイドモニターでは呼吸回数や呼吸の波形を表示可能ですが、これは電極間の電気抵抗変化から呼吸回数を測定しています。患者のわずかな体動を感知してしまうことで、実際の呼吸回数とは全く合わない表示をすることも少なくありません。呼吸数の確認は実際に測定をしましょう。

Section

心電図モニターの基本波形

心電図波形は、②1-2 のように P 波、それに続く QRS 波、さらにそれに続く T 波を 1 セットにしたものが基本波形となります。

P波は心房の興奮を表します。1つの山に見えますが、右心房の興奮の山と、それに続く左心房の興奮の山が出現します。正常の波形ではこの2つの山が1つの山となって波形で現れますが、左心房に負荷がかかっている状態などではP波が2相性となって現れることもあります。

QRS 波は心室の興奮をあらわしています。通常の心室興奮では左室と右室が同時に興奮するので QRS 時間は 0.06 ~ 0.10 秒ですが、刺激伝導系の異常で左室と右室の興奮にずれが生じると 0.10 秒

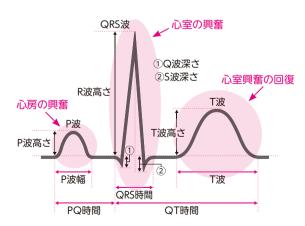


図1-2 心電図モニターの基本波形

以上の幅広の QRS (wide QRS) となります。

T波は心室の興奮からの回復を現す波形です。Q波からT波の終わりまでの時間をQT時間といいますが、心臓の収縮力の低下や、薬剤などの影響でQT時間が延長することがあります。QT時間の延長は致死的不整脈の原因となることもありますので、注意が必要です。表1-10。

表1-1 心電図の基準値

	幅(秒)
P波	$0.08 \sim 0.10$
PQ時間	$0.12 \sim 0.2$
QRS時間	$0.06 \sim 0.1$
T波	$0.2 \sim 0.3$

Section

心拍数の数え方

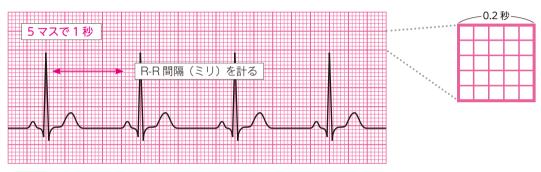


図1-3 心電図のマス目と心拍数の関係

心電図には、図1-3 にあるように必ずマス目がついています。マス目も小さいマスと、それが集まってできた太線の大きいマスがあります。

心電図では、特に大きいマスの方が重要となります。このマス目は心拍数を把握する際に必要となります。

小さなマス目は 0.04 秒で、これが 5 つ集まってできた大きいマス目は 0.2 秒になります。ですので、大きいマス目が 5 つで 1 秒ということになります。このマス目を使うと簡単に心拍数を計ることができます。5 マスで 1 秒ということは、5 マスごとに QRS 波が出現するような心電図では心拍数は 60 回 / 分ということになります。では、1 マスごとに QRS 波が出るような心電図の心拍数はいくつになるでしょう? 1 マスごとということは、5 マスごとと比べると心拍数が5 倍速いことになります。ですので、5 マスごとの心拍数 60 回 / 分×5 で心拍数は 300 回 / 分ということになります。

この「**5 マスで 1 秒**」ということと、「**1 マスごとに心拍が見られれば心拍数は 300 回 / 分**」の 2 点は約束事として暗記しましょう。

では、2 マスごとに心拍が見られるような場合には心拍数は何回になるでしょう? 1 マスごとの心拍数が 300 回 / 分でしたので、2 マスごとは、300 回 / 分÷ 2 で心拍数 150 回 / 分になります。同様の計算で 3 マスごとに QRS 波が見られる場合は 300 回 / 分÷ 3 で 100 回 / 分。 4 マスごとなら 300 回 / 分÷ 4 で 75 回 / 分というように簡単に心拍数を求めることができるのです。

この方法で心拍数の計算ができるのは QRS 波と QRS 波の間隔 (R-R 間隔) に不整がない場合 に限ります。

Section

刺激伝導系

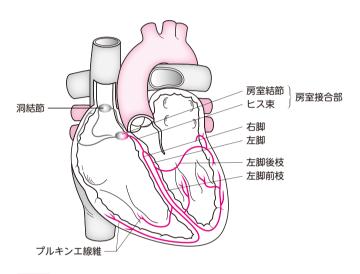


図1-4 刺激伝導系

心臓は刺激伝導系という特殊な機能によって拍動を続けています 図1-4 。刺激伝導系はどこからの指示を受けるでもなく、自らの自動能によって刺激を出し続けています。心筋は刺激があるとそれに反応して収縮しますので、刺激伝導系から出た刺激を受けて拍動し続けているのです。この刺激伝導系はいくつかの部位から成り立っています。それぞれの部位には優劣があり、自分よりも優位に立っている部位の刺激には必ず従うという特性があります。しかし、もしも自分よりも優位に立っている部位からの刺激が途絶えた場合は、自らの自動能により動き出すという特性をもっています。それぞれの自動能のリズムは、下位にいくほどゆっくりになります。

刺激伝導系のもっともトップに立っているのが洞結節です。以下、房室結節、ヒス東、右脚・ 左脚、プルキンエ線維とつながっていきます。トップである洞結節は自動能により常に 60 ~ 90 回 / 分の刺激を出し続けます。全ての刺激は房室結節以下の刺激伝導系に伝わっていきますので、 心房収縮→心室収縮という流れで心臓が拍動するわけです。

この一連の流れに異常が生じると不整脈になります。表1-2。

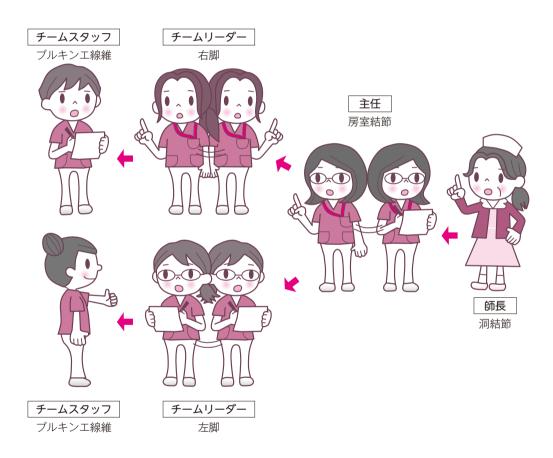
刺激伝導系は看護師の業務に例えることができます。

洞結節は病棟でいうならば師長に当たります。師長からの指示は主任に当たる房室結節に伝えられます。主任はその指示を、ヒス束を通して各チームリーダーである右脚と左脚に伝えていきます。各チームリーダーはそれぞれのチームスタッフであるプルキンエ線維に伝達していきます。各チームスタッフの働きがプルキンエ線維まで伝わった刺激による心室の収縮に当たるわけです。

表1-2 刺激伝導系の特徴

洞結節→房室結節→ヒス東→右脚・左脚→プルキンエ線維と刺激が進んでいく。

心房と心室を刺激が通れる道は房室結節→ヒス束の一方通行のみ。


刺激は右室と左室を行き来する。

刺激伝導系には自動能がある。

刺激伝導系は自分より優位の刺激に従い、その間自動能は働かない。

房室結節はブレーキの役割をする。

もし、師長が突然不在になった場合は病棟を機能させるために主任にあたる房室結節が指示を 出しますが、師長ほどの能力はありません。そのため、出せる指示はゆっくりになってしまうの です。

